Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.08.21258069

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) until now imposes a serious burden to health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is still ongoing. One of the mechanisms how neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2 specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum just before calving. Here we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein, and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persists on the nasal mucosa for at least 4 hours as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for a rapid and versatile adaption for preparing prophylactic treatments against other diseases by using the defined characteristics of antibody movement into the colostrum.


Subject(s)
Coronavirus Infections , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.299933

ABSTRACT

Combination therapies have become a standard for the treatment for HIV and HCV infections. They are advantageous over monotherapies due to better efficacy and reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify several new synergistic combinations against emerging and re-emerging viral infections in vitro. We observed synergistic activity of nelfinavir with investigational drug EIDD-2801 and convalescent serum against SARS-CoV-2 infection in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of vemurafenib combination with emetine, homoharringtonine, gemcitabine, or obatoclax against echovirus 1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar and niclosamide were synergistic against HCV infection in hepatocyte derived Huh-7.5 cells, whereas combinations of monensin with lamivudine and tenofovir were synergistic against HIV-1 infection in human cervical TZM-bl cells. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status. Overall, the development of combinational therapies could have a global impact improving the preparedness and protection of the general population from emerging and re-emerging viral threats.


Subject(s)
Coinfection , HIV Infections , Drug-Related Side Effects and Adverse Reactions , COVID-19 , Hepatitis C
SELECTION OF CITATIONS
SEARCH DETAIL